A TOURNAISIAN SPORE FLORA FROM THE CEMENTSTONE GROUP OF AYRSHIRE, SCOTLAND

by H. J. SULLIVAN

Abstract

A well-preserved spore flora containing elements diagnostic of a Tournaisian age has been obtained from a horizon approximately 100 ft . above the base of the Cementstone Group in Ayrshire. A total of twentytwo species of spores have been recognized in the assemblage; of these, eight are new. Comparison with assemblages from other parts of the world has indicated regional variations in the composition of the Tournaisian spore floras.

The oldest Carboniferous sediments in the Midland Valley of Scotland are assigned to the Cementstone Group of the Calciferous Sandstone Measures (MacGregor 1960). The sequence consists of thin argillaceous dolomites ('cementstones') interbedded with grey to green shales and mudstones. Films of gypsum, halite pseudomorphs, and mud cracks which are present on many of the bedding surfaces are evidence of the arid environment under which these sediments were laid down. The nodular development and unfossiliferous nature of the cementstones favour the view that much of the material was chemically precipitated from hypersaline waters. The Cementstone Group displays considerable lateral variation in thickness and lithology; for details, see MacGregor (1930, pp. 491-4), George (1958, pp. 304-9), Francis in Craig (1965, pp. 311-17). At many localities, the Cementstone Group succeeds the Upper Old Red Sandstone with apparent conformity. The change from the red sandstones and cornstones of the Upper Old Red Sandstone into the shales and cementstones of the Cementstone Group is continuous and transitional, and frequently the lithologies are interbedded in a passage zone between the two formations. The base of the Cementstone Group is drawn at the lowest occurrences of the cementstones.

PREVIOUS RECORDS OF FOSSILS FROM THE CEMENTSTONE GROUP

The lack of diagnostic fossils which are used for the conventional zonal subdivision of Dinantian sequences in Britain and Europe has precluded a reliable palaeontological age determination for the Cementstone Group. The fauna consists of ostracods, entomostracans, inarticulate brachiopods, fish teeth and scales, and lamellibranchs. Plant compressions and petrefactions are also common at many horizons and their distribution is adequately documented (Crookall 1932). Spores have been illustrated and described from fructifications (e.g. Smith $1962 a, 1962 b$; Alvin 1965). Knox (1959, p. 92) has also recorded the presence of fourteen genera of dispersed spores in the Calciferous Sandstone Measures which was penetrated in an unspecified borehole in Dumfriesshire. The palynological data so far published have little stratigraphical application.

Marine limestones are intercalated with cementstones in the lower part of the Cementstone Group at Randerstone, Fife (Kirkby 1902). The faunas had been dated as Tour-
naisian in age by comparison with the occurrences in northern England. George (1958) has challenged the validity of this age determination (and also the evidence of conformable contact between the Cementstone Group and the Upper Old Red Sandstone) and has suggested the faunas at Randerstone may be of Viséan age. He concludes (p. 304): 'The precise age of the oldest Carboniferous sediments remains unproved. On the evidence of the earliest goniatite beds, and on general palaeogeographical grounds of comparison with the developments in Ulster and Northumbria, it is not likely to be greater than latest Caninian or perhaps Seminulan.'

LOCATION AND PREPARATION OF THE SAMPLES

The sample of cementstone was collected by Dr. E. C. Freshney from a horizon approximately 100 ft . above the base of the Cementstone Group in Bracken Bay, Heads of Ayr, Ayrshire (Grid ref.: 2830 1860). The location of the sample is shown in text-fig. 1.

The cementstone was first treated with hydrochloric acid and then with hydrofluoric acid. The residue was oxidized with Schulze Solution for 10 minutes and washed with 5% caustic potash and distilled water.

The slides containing the holotypes and all illustrated specimens have been deposited in the collection of the Research Centre, Pan American Petroleum Corporation, Tulsa. The slides are identified with a preparation number and the coordinates are those of a Leitz Ortholux microscope (No. 618559).

SYSTEMATIC DESCRIPTIONS

Anteturma sporites H. Potonié 1893
Turma triletes (Reinsch) Potonié and Kremp 1954
Subturma azonotriletes Luber 1935
Infraturma apiculati (Bennie and Kidston) R. Potonié 1956
Genus baculatisporites Thomson and Pflug 1953
Type species. B. primarius (Wolff) Thomson and Pflug 1953.
Baculatisporites fusticulus sp. nov.
Plate 25, figs. 1, 2
Holotype. Slide P26381-A-04, $115 \cdot 0$ 53.0. Size 86μ.
Diagnosis. Size $73-100 \mu$, mean 89μ (34 specimens); amb oval to circular; exine $1 \cdot 5-2 \mu$ thick, ornamented with bacula and pila up to 1μ high and 0.7μ wide.
Description. Amb circular to oval, may be irregular due to presence of secondary folds. Trilete mark visible to indistinct, rays exceed half radius of spore, simple and slightly sinuous. Exine yellow in colour, $1 \cdot 5-2 \mu$ thick. Ornamentation consists of bacula and pila which are of uniform size and comprehensively distributed. Elements are up to $1 \mu \mathrm{high}$, $0.5-0.7 \mu$ wide and $1-2 \mu$ apart. Occasionally the ornament may be absent from a narrow zone bordering the rays. Secondary folds common.
Remarks. The spores described above cannot conveniently be accommodated in any known Palaeozoic genus. The elements are of a different shape to those in Cyclogranisporites
text-fig. 1. Geological map of the Heads of Ayr region (after Bassett 1958) showing location of sample.

Potonié and Kremp 1954, and are considerably smaller than the bacula in Raistrickia Schopf, Wilson and Bentall 1944. The ornament in Bullatisporites Allen 1965 is exclusively pilose.

Genus pustulatisporites Potonié and Kremp 1954
Type species. P. pustulatus Potonié and Kremp 1954.
Pustulatisporites gibberosus (Hacquebard) Playford 1964
Plate 25, fig. 3
Remarks. This species occurred rarely in the Cementstone Group assemblage. The specimens agreed closely with the emended description of P. gibberosus given by Playford (1964, pp. 18-19).

Previous records. Horton Group (Tournaisian) of eastern Canada (Hacquebard 1957, Playford 1964).

Genus raistrickia Schopf, Wilson, and Bentall 1944
Type species. R. grovensis Schopf in Schopf, Wilson, and Bentall 1944.
Raistrickia clavata Hacquebard emend. Playford 1964 Plate 25, figs. 4, 5
Remarks. A total of 30 specimens of R. clavata were identified in the Cementstone Group assemblage. They showed a similar morphological variation to the examples illustrated by Playford (1964, pl. 6, figs. 5-10) from the Horton Group.
Previous records. Horton Group (Tournaisian) of eastern Canada (Hacquebard 1957, Playford 1964).

Raistrickia corynoges sp. nov.
Plate 25, figs. 6-8; text-fig. 2
1963 Acantlotriletes macrurus (non Luber and Waltz 1938, p. 30; pl. 7, fig. 94) Kedo, p. 44; pl. III, fig. 58.
Holotype. Slide P26381-A-04, $109 \cdot 4$ 45•3. Size, 58μ.
Diagnosis. Size (excluding ornament) $50-75 \mu$, mean 64μ (44 specimens); amb circular to oval; exine ornamented with bacula, coni and verrucae; equatorial elements baculose, up to 15μ high and 5μ wide; trilete rays may be obscured by ornamentation.
Description. Amb circular to oval. Trilete mark may be distinct or obscured by ornamentation. Rays extend half to two-thirds radius of spore, straight, vertex high. Exine up to 4μ thick, yellow to brown in colour. Ornamentation extremely variable in size and shape on any individual specimen. In the spore (Pl. 25, fig. 8), the proximal polar region is ornamented with dispersed broad-based cones and verrucae up to 2μ high and wide and up to 4μ apart. Towards the equator, the elements become larger, more densely distributed, and baculose in shape. Equatorial bacula $8-10 \mu$ high and $4-5 \mu$ (rarely 7μ) wide. The bacula usually have rounded tops; less frequently, the tops are pointed or blunted (text-fig. 2). The distal polar region of the specimen is ornamented with cones
and verrucae which may be discrete or coalescent and up to 4μ high and wide. The equatorial elements in the specimen (Pl. 25, fig. 6) are up to 15μ high and $3-5 \mu$ wide. The distal surface is also covered with bacula but with a few broad based cones among them. The proximal polar region is ornamented with verrucose and spatulate processes up to 4μ in height and 8μ in width. In the spore (Pl. 25, fig. 7), the elements are dominantly baculose and are connected at the base by low ridges. Secondary folds rare. Spores frcquently preserved in off-polar compression.

text-fig. 2. Profile view of sculptural elements of Raistrickia corynoges sp. nov.
Comparison. The species Acanthotriletes sphaerites Kedo 1963 (p. 44; pl. 3, fig. 58) is similar to R. corynoges, but differs in possessing longer trilete rays, and larger (up to 24μ high) and more uniform processes. Archaeotriletes hamulus (Naumova 1953, p. 52; pl. 6, fig. 54) from the Middle Frasnian of the Moscow Platform is inadequately decribed and illustrated, but the ornamentation appears to be of a larger size, more uniform in shape, and less densely distributed than in R. corynoges.

Remarks. Kedo's illustration of Acanthotriletes macrurus differs considerably from the drawing of Luber in Luber and Waltz $(1938,1941)$ and those of other Russian authors (e.g. Ishchenko 1956 , pl. 4 , fig. 43 ; 1958, pl. 2, figs. 28, 29). The photograph given by Playford (1962, pl. 81, fig. 3) is of a specimen similar to the original drawing of Luber.

Raistrickia sp. described and illustrated by Sullivan (1964, p. 1252, pl. 1, fig. 8) from the Lower Limestone Shales of the Forest of Dean is undoubtedly R. corynoges.

Previous records. The Tournaisian (Cherepet horizon) of the Pripyat Basin of eastern Russia (Kedo 1963). Lower Limestone Shales (Tournaisian) of the Forest of Dean, Gloucestershire (Sullivan 1964).

EXPLANATION OF Plate 25
All figures $\times 650$.
Figs. 1-2. Baculatisporites fusticulus sp. nov. 1, Holotype, distal surface, slide P26381-A-04, 115.0 53.0. 2, Proximal surface, slide P26381-A-04, 127.7 30.6.
Fig. 3. Pustulatisporites gibberosus (Hacquebard) Playford 1964; distal surface, slide P26381-A-01, 119.637 .9.

Figs. 4-8. Raistrickia spp. 4-5, Raistrickia clavata Hacquebard emend. Playford 1964. 4, Proximal surface, slide P26381-A-08, $120 \cdot 0$ 40.8. 5, Oblique view, slide P26381-A-08, 109.7 41.5. 6-8, Raistrickia corynoges sp. nov. 6, Holotype, distal surface, slide P26381-A-04, 109.4 45•3. 7, Proximal surface, slide P26381-A-O3. $123 \cdot 6$ 43•2. 8, Proximal surface, slide P26381-A-01, 118•8 40.4.
Figs. 9-10. Schopfites claviger sp. nov. 9, Holotype, ? distal surface, slide P26381-A-03, 125.0 26.5. 10, Oblique view, slide P26381-A-02, 125.2 57.3.
Figs. 11-12. Verrucosisporites scoticus sp. nov. 11, Holotype, distal surface, slide P26381-A-08, 116.9 43.9. 12, Distal surface, slide P26381-A-03, 123.9 44.5.

Genus schopfites Kosanke 1950
Type species. S. dimorphus Kosanke 1950.
Schopfites claviger sp. nov.
Plate 25, figs. 9, 10
Holotype. Slide P26381-A-03, $125 \cdot 0$ 26.5. Size, 50μ.
Diagnosis. Size $40-52 \mu$ (excluding ornament), mean 47μ (28 specimens); trilete rays not observed; exine ornamented with clava and bacula up to 4μ high and 3μ wide; portion of exine without ornamentation.
Description. Amb circular to oval. Trilete rays not observed. Exine thin, thickness not determinable, finely and densely infrapunctate. Ornamentation consists of clava and bacula, up to 4μ high and 3μ wide, which cover between $60-80 \%$ of the total exine surface. Parallel-sided compression folds are sometimes located near the equator.

Comparison. S. augustus Playford (1964, p. 26, pl. 7, figs. 2-7) is larger (up to 122μ), has a more pronounced ornamentation and a distinct trilete mark.

Genus verrucosisporites (Ibrahim) Potonié and Kremp 1954
Type species. V. verrucosus (Ibrahim) Ibrahim 1933.
Verrucosisporites scoticus sp. nov. Plate 25, figs. 11, 12

Holotype. Slide P26381-A-08, 116.9 43.9. Size, 42μ.
Diagnosis. Size $38-45 \mu$, mean 42μ (18 specimens); exine $2-3 \mu$ thick, ornamented with discrete dome-shaped verrucae or mammilate elements, $2-4 \mu$ high, $2-6 \mu$ wide; ornament mainly confined to distal surface.

Description. Amb circular, rounded triangular or oval. Trilete mark distinct to visible, rays straight or gently curved, exceed two-thirds radius of spore. Exine $2-3 \mu$ thick, laevigate, reddish-brown in colour. Exine ornamented with discrete verrucae which usually have rounded tops, only occasionally truncated. In some specimens, the equatorial elements are mammilate. Verrucae $2-4 \mu$ high (excluding exine thickness), 2-6 μ in basal diameter, and 1-4 μ apart. Ornamentation confined mainly to distal and equatorial surfaces. Some elements may be present on the proximal hemisphere where they are usually located at the termini of the rays. The number of elements visible at the outline varies between 14 and 25. Secondary folds are absent.

Comparison. Pustulatisporites gibberosus (Hacquebard) Playford 1964 bears a superficial resemblance to V. scoticus. It may be differentiated by its more discrete and larger verrucae and by the infragranulate exine.

Verrucosisporites variotuberculatus sp. nov.
Plate 26, figs. 1-4
Holotype. Slide P26381-A-01, $114 \cdot 7$ 38•3. Size, 64μ.

Diaghosis. Size $57-90 \mu$, mean 72μ (45 specimens); amb circular to oval; trilete rays half to two-thirds radius; exine $4-10 \mu$ thick, verrucae $1-3 \mu$ high and $2-10 \mu$ wide, reduced in size towards proximal pole.
Description. Amb circular to oval. Trilete mark distinct, sometimes gaping, rays extend one-half to two-thirds radius of spore. Exine $4-10 \mu$ thick; thickness constant in any single specimen. Exine ornamented with low, dome-shaped verrucae $1-3 \mu$ high (excluding exine thickness), surface smooth to irregularly pitted (corrosion?). Verrucae are polygonal in basal view (usually irregularly pentagonal), rarely circular, and are 4-10 μ wide. Elements are separated by narrow, stripe-like channels which form a discontinuous negative reticulum. Characteristically, there is a reduction in size of the ornament in the region of the proximal pole (Pl. 26, figs. 1, 2, 4). Secondary folds are absent.
Comparison. V. congestus Playford 1964 and Convolutispora stigmoidea Bharadwaj and Venkatachala 1962 can easily be differentiated from V. variotuberculatus by the fact that there is no reduction in the size of the verrucae at the proximal pole. V. grimlosus (Naumova) Sullivan 1964 resembles V. variotuberculatus, but is smaller in size (up to 70μ), has a thinner exine and a less distinct trilete mark.

Infraturma murornati Potonié and Kremp 1954
Genus convolutispora Hoffmeister, Staplin, and Malloy 1955
Type species. C. florida Hoffmeister, Staplin, and Malloy 1955.
Convolutispora cf. mellita Hoffmeister, Staplin, and Malloy 1955
Plate 26, figs. 5-7
Description. Size $60-95 \mu$, mean 81μ (40 specimens). Amb circular to oval. Trilete mark distinct, but may be obscured by ornamentation, rays exceed half radius of spore, straight to slightly curved. Exine $6-8 \mu$ thick, ornamented with broad, low anastomosing ridges which rarely exceed 2μ in height (excluding exine thickness) and 8μ in width. Lumina are of two kinds: one set is circular to oval in shape and up to 4μ in the longest diameter, and a second set consists of narrow, irregularly sinuous depressions less than 3μ wide and up to 25μ long. Margin smooth to slightly undulating.

Collmparison. A detailed examination of the holotype is necessary before it can be established whether the specimens described above are truly conspecific with C. mellita.

EXPLANATION OF PLATE 26

All figures $\times 650$.
Figs. 1-4. Verrucosisporites variotuberculatus sp. nov. 1, Semi-oblique view, slide P26381-A-01, 125.0 54.4. 2, Holotype, semi-oblique view, slide P26381-A-01, $114 \cdot 738 \cdot 3$. 3, Proximal surface, slide P26381-A-08, 117•3 43•7. 4, Proximal surface, slide P26381-A-03, 123•8 22•1.
Figs. 5-8. Convolutispora spp. 5-7, Convolutispora cf. mellita Hoffmeister, Staplin, and Malloy 1955. 5, Distal surface, slide P26381-A-08, $120 \cdot 0$ 44-2. 6, Proximal surface, slide P26381-A-04, 119•7 28.5. 7, Proximal surface, slide P26381-A-04, 117-9 30•8. 8, Convolutispora cf. tuberosa Winslow 1962. Proximal surface, slide P26381-A-02, 124•3 43•3.
Fig. 9. Vallatisporites vallatus Hacquebard 1957. Proximal surface, slide P26381-A-03, 116-0 39.2.
Fig. 10. Lycospora torulosa Hacquebard 1957. Proximal surface, slide P26381-A-02, 122.6 22.4.
Fig. 11-12. Hymenozonotriletes? hastulus sp. nov. 11, Proximal surface, slide P26381-A-04, 122•1 50.2.
12, Holotype, proximal surface, slide P26381-A-04, $125 \cdot 952 \cdot 7$.

The width of the ridges exceed the dimensions quoted by Hoffmeister, Staplin, and Malloy (1955, p. 385), but otherwise they are similar to the published description.

Convolutispora cf. tuberosa Winslow 1962

Plate 26, fig. 8
Description. Size $65-72 \mu$ (5 specimens). Amb subcircular. Trilete mark not observed. Exine 2μ thick, ornamented with verrucae, frequently with expanded tops, up to 6μ high and 10μ wide. The verrucae may be fused laterally into broad irregular ridges up to 12μ long. Bacula up to $2 \cdot 5 \mu$ high and 4μ wide are interspersed among the ridges.

Comparison. Winslow (1962, p. 71) stated that the 'tuberculate ridges' in C. tuberosa tended to lie parallel to the rays. This feature could not be demonstrated in the five specimens examined.

> Turma zonales (Bennie and Kidston) R. Potonié 1956
> Subturma zonotriletes Waltz 1935
> Infraturma Cingulati Potonié and Klaus 1954
> Genus lycospora Schopf, Wilson, and Bentall 1944

Type species. L. micropapillata (Wilson and Coe) Schopf, Wilson, and Bentall 1944.
Lycospora torulosa Hacquebard 1957
Plate 26, fig. 10
Remarks. A total of seven specimens were identified from the Cementstone Group assemblage. They agreed closely with the forms described by Hacquebard (1957, p. 312) and Playford (1964, p. 35), from the Horton Group (Tournaisian) of eastern Canada.

Genus vallatisporites Hacquebard 1957
Type species. V. vallatus Hacquebard 1957.
Vallatisporites vallatus Hacquebard 1957
Plate 26, fig. 9
Remarks. Only five specimens were observed. For description see Hacquebard (1957, pp. 312-13) and Staplin and Jansonius (1964, p. 112).

Previous records. Horton Group (Tournaisian) of eastern Canada (Hacquebard 1957, Playford 1964). Banff Formation (Tournaisian) of Alberta (Staplin and Jansonius 1964).

Genus knoxisporites (Potonié and Kremp) Neves 1964
Type species. K. hageni Potonié and Kremp 1954.
Knoxisporites pristinus sp. nov.
Plate 27, figs. 1-5
Holotype. Slide P26381-A-08, $123 \cdot 1$ 48.9. Size, 66μ.
Diagnosis. Size $62-103 \mu$, mean 85μ (63 specimens); distal thickenings ill-defined and
of variable form; cingulum one-fifth to one-seventh of the total radius; rarely preserved in good proximo-distal orientation.
Description. Amb sub-circular, may be irregular due to folding. Trilete rays extend three-quarters radius of spore cavity, usually bifurcating at their termini. Cingulum varies between one-fifth and one-seventh total radius of spore, uniform in thickness, but may be variable in width. Exine thickened on distal surface: thickenings are variable in shape and usually ill-defined. In some cases (e.g. Pl. 27, fig. 5), they are visible only as a slight colour differentiation of the distal exoexine. The thickened bands may extend from the interradial regions of the spore cavity or cingulum and fuse at the distal pole, (Pl. 27, figs. 1, 3). The muri may also enclose a small unthickened circular area near the distal pole (Pl. 27, fig. 2). In other specimens (Pl. 27, fig. 4), there may be a circular thickened band with short interradial extensions. The spores are rarely preserved in good proximo-distal orientation. Compression frequently results in the splitting of the exine and the presence of at least one parallel-sided secondary fold.
Remarks. This species is distinguished from other previously described species of Knoxisporites by the ill-defined thickenings and the lack of good proximo-distal orientation.

> Subturma pseudosaccititriletes Richardson 1965
> Infraturma intrornati Butterworth and Williams 1958
> Genus auroraspora Hoffmeister, Staplin and Malloy 1955

Type species. A. solisortus Hoffmeister, Staplin, and Malloy 1955.
Auroraspora macra sp. nov.
Plate 27, figs. 6-10
Holotype. Slide P26381-A-04, $120 \cdot 2$ 34•6. Size, 49μ.
Diagnosis. Size $48-68 \mu$, mean 58μ (65 specimens); amb subcircular to irregular; exoexine laevigate, intexine laevigate to scabrate; trilete mark exceeds two-thirds radius of spore body.

Description. Amb subcircular, frequently irregular due to folding. Intexine 1.5μ thick, laevigate to scabrate. Trilete rays straight, simple, extend two-thirds to three-quarters of the radius of the spore body. Exoexine thin, thickness not determinable, often finely folded in an irregular pattern. Exoexine usually pitted and torn (Pl. 27, figs. 9, 10).

EXPLANATION OF PLATE 27

All figures $\times 650$.
Figs. 1-5. Knoxisporites pristinus sp. nov. 1, Distal surface, slide P26381-A-01, $108 \cdot 8$ 37•4. 2, Distal surface, slide P26381-A-03, $115 \cdot 456 \cdot 8.3$, Distal surface, proximal surface missing, slide P26381-A-08, $111.738 \cdot 4$. 4, Holotype, distal surface, slide P26381-A-08, $123 \cdot 148 \cdot 9,5$, Proximal surface, slide P26381-A-03, $114 \cdot 0$ 55.3.
Figs. 6-10. Auroraspora macra sp. nov. 6, Distal surface, slide P26381-A-03, 114.0 50.0.7, Holotype, proximal surface, slide P26381-A-04, 120•2 34.6. 8, Proximal surface, slide P26381-A-09, 117.2 42.9. 9, Proximal surface, slide P26381-A-04, 111•2 27.7. 10, Proximal surface, slide P26381-A-01, 112.9 30.9.

Figs. 11-13. Grandispora echinata Hacquebard 1957. 11, Distal surface, slide P26381-A-08, $123 \cdot 3$ 32•1. 12, Distal surface, slide P26381-A-08, $120 \cdot 3$ 36.4. 13, Distal surface, slide P26381-A-01, $118 \cdot 942 \cdot 0$.

Comparison. Auroraspora solisortus is larger (up to 78μ), has longer trilete rays, and the folds of the exoexine are usually arranged in a radial pattern.

Infraturma extrornati Butterworth and Williams 1958 Genus hymenozonotriletes (Naumova 1937?, 1939) Potonié 1958
Type species. H. polyacanthus Naumova 1953.
Remarks. The genus Hymenozonotriletes as interpreted by Russian palynologists includes species which can be more conveniently assigned to other zonate genera, e.g. Grandispora Hoffmeister, Staplin, and Malloy 1955, Spinozonotriletes Hacquebard 1957, Vallatisporites Hacquebard 1957, Densosporites (Berry) Potonié and Kremp 1954, and Lycospora Schopf, Wilson, and Bentall 1944. This broad circumscription of Hymenozonotriletes is inconsistent with the principles of classification of Potonié and Kremp and, if

teXt-fig. 3. Diagrammatic representation of Hymenozonotriletes? hastulus sp. nov. and its hypothetical cross-section.
it is to be incorporated into this system, a redefinition will be necessary. Such an emendation is not possible at this time because of the doubts concerning the details of structure and exine stratification of the type species, H. polyacanthus. The species H. hastulus sp. nov. described below is provisionally assigned to Hymenozonotriletes since it conforms with the most recent interpretation of the genus (Staplin and Jansonius 1964).

